# **BELFOREST WATER SYSTEM**

9080 County Road 64 Daphne, Alabama 36526 251.626.5554 belforestwater.com facebook.com/BWSinc

#### **DEFINITIONS**

**Action Level** - The concentration of a contaminant that triggers treatment or other requirement a water system shall follow. **Disinfection Byproducts** - contaminants formed when chlorine is used as a disinfectant.

**Maximum Contaminant Level or MCL** - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

**Maximum Contaminant Level Goal or MCLG** - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level or MRDL - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**Maximum Residual Disinfectant Level Goal or MRDLG** - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

**Nephelometric Turbidity Unit (NTU)** - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

**Non-Detects (ND)** - laboratory analysis indicates that the constituent is not present.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/l) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

**Picocuries per liter (pCi/L)** - picocuries per liter is a measure of the radioactivity in water.

**Treatment Technique** - A required process intended to reduce the level of a contaminant in drinking water.

**Unregulated contaminants** are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Variances and Exemptions - ADEM or EPA permission not to meet an MCL or a treatment technique under certain conditions.

The **Total Coliform Rule** requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulation, we have increased the average amount of chlorine in the distribution system.



#### NOTES ON LEAD

Complete lead tap sampling data and Service Line Inventory is available for review upon request at our main office at 9080 County Road 64, Daphne, Alabama, 36526. Belforest Water System is required to sample for lead in schools and licensed child care facilities as requested by the facility. You may contact your school or child care facility for further information about potential sampling results.

If present, elevated levels of lead can cause serious health problems in all age groups, especially for pregnant women and young children. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney, or nervous system problems.

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. BWS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at

#### http://www.epa.gov/safewater/lead.

Based on a study conducted by the Department and with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required.



# BWS

Consumer Confidence Report for Monitoring Year 2024



# Our mission to provide pure, abundant water to the residents of the Belforest community has not wavered since BWS was founded in 1972.

We are pleased to present our Annual Drinking Water Quality Report for the 2024 Monitoring Year. In this document, you'll find information about where your drinking water comes from, the steps we take to protect our natural resources, the basics of our water treatment process, and how your drinking water is tested and continually monitored.

We constantly perform water quality tests at various sampling locations throughout our service area. The results from 2024 testing are detailed in this report.

As in years past, your tap water met all applicable U.S. Environmental Protection Agency (EPA) and the Alabama Department of Environmental Management (ADEM) drinking water health standards. We are proud to report that our system did not violate current water quality standards in the 2024 Monitoring Year.

#### About Our System

Our water source is a natural underground reservoir known regionally as the Miocene Aquifer that underlies large portions of southwest Alabama and western Florida. The aquifer is recharged primarily through precipitation, and discharge is primarily to streams, rivers, bays, sounds, and wells. Operating under permit by the Alabama Department of Environmental Management (ADEM), Belforest Water System pumps water from this aguifer through four (4) wells that range in depth from 140-220 feet below the ground surface. In compliance with ADEM, BWS has developed a Source Water Assessment Plan to assist in protecting our water sources and to provide information about potential sources of contamination. The plan is available for review at our main

pure, abundant water



CHARLES DUBE President

VAIKIUK HEITEK Vice President MICHAEL METZ Secretary DON JOFFI Member ANTHONY PIERCE
Member

Board of Directors' meetings are held on the fourth Monday of every month at 5 pm unless published otherwise. Meetings are held at 9080 County Road 64, Daphne.



#### TABLE OF PRIMARY DRINKING WATER CONTAMINANTS

| IADLL UI PKIN                  | IAK    | וואט ז             | UNINO WHILK GO                    | ו עו ע | A IVI I IV         | AINIO                           |     |                  |
|--------------------------------|--------|--------------------|-----------------------------------|--------|--------------------|---------------------------------|-----|------------------|
| CONTAMINANT                    | MCL    | AMOUNT<br>DETECTED | CONTAMINANT                       | MCL    | AMOUNT<br>DETECTED | CONTAMINANT                     | MCL | AMOUN<br>DETECTE |
| BACTERIOLOGICAL                |        |                    | Selenium (ppb)                    | 50     | ND                 | Endrin (ppb)                    | 2   | ND               |
| Turbidity                      | TT     | ND                 | Thallium (ppb)                    | 2      | ND                 | Epicholorohydrin                | TT  | ND               |
| Fecal Coliform & E. coli       | 0      | ND                 | ORGANIC CHEMICALS                 |        |                    | Ethylbenzene (ppb)              | 700 | ND               |
| Radiological                   |        |                    | Acrylamide                        | TT     | ND                 | Ethylene dibromide (ppt)        | 50  | ND               |
| Beta/photon emitters (mrem/yr) | 4      | ND                 | Alachlor (ppb)                    | 2      | ND                 | Glyphosate (ppb)                | 700 | ND               |
| Alpha emitters (pCi/l)         | 15     | 2.4                | Atrazine (ppb)                    | 3      | 0.02               | Haloacetic Acides (ppb)         | 60  | ND               |
| Combined Radium (pCi/l)        |        | 2.4                | Benzene (ppb)                     | 5      | ND                 | Heptachlor (ppt)                | 400 | ND               |
| Jranium (ppb)                  | 30     | ND                 | Benzo(a)pyrene[PHAs] (ppt)        | 200    | ND                 | Heptachlor epoxide (ppt)        | 200 | ND               |
| NORGANIC                       |        |                    | Carbofuran (ppb)                  | 40     | ND                 | Hexachlorobenzene (ppb)         | 1   | ND               |
| Antimony (ppb)                 | 6      | ND                 | Carbon Tetrachloride (ppb)        | 5      | ND                 | Hexachlorocyclopentadiene (ppb) | 50  | ND               |
| Arsenic (ppb)                  | 10     | ND                 | Chlordane (ppb)                   | 2      | ND                 | Lindane (ppt)                   | 200 | ND               |
| Asbestos (MFL)                 | 7      | ND                 | Chlorobenzene (ppb)               | 100    | ND                 | Methoxychlor (ppb)              | 40  | ND               |
| Barium (ppm)                   | 2      | 0.1                | 2, 4-D                            | 70     | ND                 | Oxamyl [Vydate] (ppb)           | 200 | ND               |
| Beryllium (ppb)                | 4      | ND                 | Dalapon (ppb)                     | 200    | ND                 | Pentachloropheno1 (ppb)         | 1   | ND               |
| Bromate (ppb)                  | 10     | ND                 | Dibromochloropropane (ppt)        | 200    | ND                 | Picloram (ppb)                  | 500 | ND               |
| Cadmium (ppb)                  | 5      | ND                 | 0-Dichlorobenzene (ppb)           | 600    | ND                 | PCBs (ppt)                      | 500 | ND               |
| Chloramines (ppm)              | 4      | ND                 | p-Dichlorobenzene (ppb)           | 75     | ND                 | Simazine (ppb)                  | 4   | ND               |
| Chlorine (ppm)                 | 4      | 1.45               | 1,2-Dichloroethane (ppb)          | 5      | ND                 | Styrene (ppb)                   | 100 | ND               |
| Chlorine dioxide (ppb)         | 800    | ND                 | 1,1-Dichloroethylene (ppb)        | 7      | ND                 | Tetrachloroethylene (ppb)       | 5   | ND               |
| Chlorite (ppm)                 | 1      | ND                 | Cis-1,2-Dichlooethylene (ppb)     | 70     | ND                 | Toluene (ppm)                   | 1   | ND               |
| Chromium (ppb)                 | 100    | 0.63               | trans-1,2-Dichloreoethylene (ppb) | 100    | ND                 | TOC                             | TT  | ND               |
| Copper (ppm)                   | AL=1.3 | 0.039*             | Dichloromethane (ppb)             | 5      | ND                 | TTHM (ppb)                      | 80  | 2.23             |
| Cyanide (ppb)                  | 200    | 0                  | 1,2-Dichloropropane (ppb)         | 5      | ND                 | Toxaphene (ppb)                 | 3   | ND               |
| Fluoride (ppm)                 | 4      | 0.02               | Di-(2-ethylhexyl)adipate (ppb)    | 400    | ND                 | 2,4,5-TP (Silvex) (ppb)         | 50  | ND               |
| ead (ppb) (from customer tap)  | AL=15  | 4.5*               | Di(2-ethylhexyl)phthlates (ppb)   | 6      | ND                 | 1,2,4-Tricholorobenzene (ppb)   | 70  | ND               |
| Mercury (ppb)                  | 2      | 0.02               | Dinoseb (ppb)                     | 7      | ND                 | 1,1,1-Trichloroethane (ppb)     | 200 | ND               |
| Nitrate (ppm)                  | 10     | 4.25               | Dioxin[2,3,7,8-TCDD] (ppq)        | 30     | ND                 | 1,1,2-Trichloroethane (ppb)     | 5   | ND               |
| Nitrite (ppm)                  | 1      | 0                  | Diquat (ppb)                      | 20     | ND                 | Trichloroethylene (ppb)         | 5   | ND               |
| Γotal Nitrate & Nitrite        | 10     | 4.25               | Endothall (ppb)                   | 100    | ND                 | Vinyl Chloride (ppb)            | 2   | ND               |
|                                |        |                    |                                   |        |                    | Xylenes (ppm)                   | 10  | ND               |

<sup>\*</sup>Amount is 90<sup>th</sup> percentile of 2024 sampling.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

# SECONDARY & UNREGULATED CONAMINANTS

| OLUUNDAKI & C                | ועונ  | LUULAILD UUN                | /\ IVI I | MANIO                   |     |
|------------------------------|-------|-----------------------------|----------|-------------------------|-----|
| CONTAMINANT                  | MCL   | CONTAMINANT                 | MCL      | CONTAMINANT             | MCL |
| SECONDARY                    |       | UNREGULATED                 |          |                         |     |
| Aluminum                     | 0.2   | 1,1 - Dichloropropene       | N/A      | Chlorodibromomemthane   | N/A |
| Chloride                     | 250   | 1,1,2,2 - Tetrachloroethane | N/A      | Chloroform              | N/A |
| Color (PCU)                  | 15    | 1,1 - Dichloroethane        | N/A      | Chloromethane           | N/A |
| Copper                       | 1     | 1,2,3 - Trichlorobenzene    | N/A      | Dibromochloromethane    | N/A |
| Foaming Agents               | 0.5   | 1,2,3 - Trichloropropane    | N/A      | Dibromomethane          | N/A |
| Iron                         | 0.3   | 1,2,4 - Trimethylbenzene    | N/A      | Dichlorodifluoromethane | N/A |
| Magnesium                    | 75    | 1,2,4 - Trichlorobenzene    | N/A      | Dieldrin                | N/A |
| Odor (T.O.N.)                | 1     | 1,3 - Dichloropropane       | N/A      | Fluorotrichloromethane  | N/A |
| Silver                       | 0.1   | 1,3 - Dichloropropene       | N/A      | Hexachlorobutadiene     | N/A |
| Sulfate                      | 250   | 1,3,5 - Trimethylbenzene    | N/A      | Isoprpylbenzene         | N/A |
| Total Dissolved Solids       | 500   | 2,2 - Dichloropropane       | N/A      | M-Dichlorobenzene       | N/A |
| Zinc                         | 5     | 3 - Hydroxycarbofuran       | N/A      | Methomyl                | N/A |
| SPECIAL                      |       | Aldicarb                    | N/A      | Metolachlor             | N/A |
| Calcium                      | N/A   | Aldicarb Sulfone            | N/A      | Metribuzin              | N/A |
| Carbon Dioxide               | N/A   | Aldicarb Sulfoxide          | N/A      | MTBE                    | N/A |
| Manganese                    | 0.05  | Aldrin                      | N/A      | N - Butylbenzene        | N/A |
| pH (SU)                      | N/A   | Bromobenzene                | N/A      | Naphthalene             | N/A |
| Sodium                       |       | Bromochloromethane          | N/A      | N-Propylbenzene         | N/A |
| Specific Conductance (umhos) | < 500 | Bromodichloromethane        | N/A      | O-Chlorotoluene         | N/A |
| Temperature (*C)             | N/A   | Bromoform                   | N/A      | P-Chlorotoluene         | N/A |
| Total Alkalinity             | N/A   | Bromomethane                | N/A      | P-Isopropyltoluene      | N/A |
| Total Hardness (as CaCO3)    | N/A   | Butachlor                   | N/A      | Propachlor              | N/A |
|                              |       | Carbaryl                    | N/A      | Sec - Butylbenzene      | N/A |
|                              |       | Chloroethane                | N/A      | Tert - Butylbenzene     | N/A |

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material. It can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Water Drinking Hotline (800-426-4791) or on EPA's website epa.gov/safewater.

#### DETECTED DRINKING WATER CONTAMINANTS

| CONTAMINANT                  | MCLG    | MCL                      |       | RANGE                 |                 | AMOUNT DETECTED  |              | LIKELY SOURCE OF CONTAMINATION                                                                                                |  |
|------------------------------|---------|--------------------------|-------|-----------------------|-----------------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|--|
|                              |         |                          | E     | BACTERIOLOGICAL       | CONTAMINANTS    | S JANUARY        | - december   | 2024                                                                                                                          |  |
| Total Coliform Bacteria      | 0.00    | TT                       |       |                       |                 | 1 positive sampl | e 12/11/2024 | Naturally present in the environment                                                                                          |  |
|                              |         |                          |       | RADIOLOGICAL C        | ONTAMINANTS     | JANUARY - I      | DECEMBER 2   | 024                                                                                                                           |  |
| Alpha emitters               | 0.00    | 15                       |       |                       |                 | 2.4              | pCi/L        | Erosion of natural deposits                                                                                                   |  |
| Combined Radium 226 & 228    | 0.00    | 5                        | 2.1   | -                     | 2.4             | 2.4              | pCi/L        | erosion of natural deposits                                                                                                   |  |
|                              |         |                          |       | INORGANIC CC          | NTAMINANTS      | JANUARY - DE     | ECEMBER 202  | 4                                                                                                                             |  |
| Chlorine                     | MRDLG=4 | MRDL-=4                  |       |                       |                 | 1.45             | ppm          | Water additive used to control microbes                                                                                       |  |
| Nitrate (as N)               | 10.00   | 10                       |       |                       |                 | 4.25             | ppm          | Runoff from fertilizer use; leaching from septic tanks, sewag<br>erosion of natural deposits                                  |  |
| Total Nitrate & Nitrite      | 10.00   | 10                       | 3.26  | -                     | 4.25            | 4.25             | ppm          |                                                                                                                               |  |
| Copper                       | N/A     | 1.3                      | 0.003 | -                     | 0.058           | 0.039*           | ppm          | Corrosion of household plumbing systems; erosion of natural deposit leaching from wood preservatives                          |  |
| Lead                         | N/A     | 15                       | ND    | -                     | 1 result at 8.5 | 4.5*             | ppb          | Corrosion of household plumbing systems; erosion of natural deposi                                                            |  |
|                              |         |                          |       | ORGANIC CON           | TAMINANTS       | JANUARY - DEG    | CEMBER 2024  | 4                                                                                                                             |  |
| Atrazine                     | 3.00    | 3                        | 0     | -                     | 0.02            | 0.02             | ppb          | Runoff from herbicides used on row crops                                                                                      |  |
| Total trihalomethanes (TTHM) | 0.00    | 80                       | 0     | -                     | 2.23            | 2.23             | ppb          | Byproduct of drinking water chlorination                                                                                      |  |
|                              |         | UNREGULATED CONTAMINANTS |       | JANUARY - DECEMBER 20 |                 | 024              |              |                                                                                                                               |  |
| Chloroform                   | N/A     | N/A                      | ND    | -                     | 2.48            | 2.48             | ppb          | Naturally occuring in the environment as a result of industrial dischar<br>or agricultural runoff; by-product of chlorination |  |
| Bromodichloromethane         | N/A     | N/A                      | 0     | -                     | 1.47            | 1.47             | ppb          | Byproduct of drinking water chlorination                                                                                      |  |
| Dibromochloromethane         | N/A     | N/A                      | 0     |                       | 1.35            | 1.35             | ppb          | byproduct of drinking water chlorination                                                                                      |  |

<sup>\*</sup>Amount is 90<sup>th</sup> percentile of 2024 sampling. Zero sites exceeded action level.

#### DETECTED PFAS COMPOUNDS

| CONTAMINANT                   | MCLG   | MCL    | RESULTS | UNITS |
|-------------------------------|--------|--------|---------|-------|
| Perfluorobutane Sulfonic Acid | N/A    | N/A    | 5       | ppt   |
| Perfluorohexanoic Acid        | N/A    | N/A    | 3.8     | ppt   |
| Perfluoroheptanoic Acid       | N/A    | N/A    | 2.3     | ppt   |
| Perfluorohexane Sulfonic Acid | 10 ppt | 10 ppt | 4       | ppt   |
| Perfluoroctane Sulfonic Acid  | 0      | 4 ppt  | 4.6     | ppt   |
| Perfluoroctanoic Acid         | 0      | 4 ppt  | 5.2     | ppt   |

## NON-DETECTED PFAS COMPOUNDS

| 11C1-PF3OUDS | HFPO-DA  | Perfluorodecanoic Acid   | Perfluorotetradecanoic Acid |
|--------------|----------|--------------------------|-----------------------------|
| 9C1-PF3ONS   | NEIFOSAA | Perfluorododecanoic Acid | Perfluorotridecanoic Acid   |
| ADONA        | NMeFOSAA | Perfluorononanoic Acid   | Perfluoroundecanoic Acid    |

## WATER TREATMENT PROCESS

Raw water is pumped from the underground aquifers to an Aeration chamber. Aeration quickly adds Oxygen to the water and helps eliminate certain naturally-occurring contaminates such as Iron. After Aeration, Lime is added to adjust the water's pH to within an optimum range and a Disinfectant (Chlorine) is added to inactivate potentially harmful pathogens and to keep the water safe in the water lines all the way to each customer's home. The water and additives are then given ample time to thoroughly mix inside a large tank called a Clearwell before entering the distribution system. Once the treated water meets current water quality requirements, large pumps move the water into Elevated Storage Tanks, where the water then moves

through the distribution system to the customer. BWS utilizes a Bacteriological Monitoring Plan, and has a Cross Connection Policy in place to help ensure that safe, healthy water is delivered to customers.

## LIST OF CONTAMINANTS TESTED FOR AND NOT DETECTED

| 1,1,1,2-Tetrachloroethane   | 3-Hydroxycarbofuran  | Chloromethane              | Hexachlorobenzene         | P-Dichlorobenzene                     |
|-----------------------------|----------------------|----------------------------|---------------------------|---------------------------------------|
| 1,1,1-Trichloroethane       | Alachlor ESA         | CIS-1,2-Dichloroethylene   | Hexachlorobutadiene       | P-Isopropyltoluene                    |
| 1,1,2,2-Tetrachloroethane   | Aldicarb             | Dalapon                    | Hexachlorocyclopentadiene | Pentachlorophenol                     |
| 1,1,2-Trichloroethane       | Aldicarb Sulfone     | DI(2-Ethylhexyl) Adipate   | Isopropylbenzene          | Picloram                              |
| 1,1-Dichloroethane          | Aldicarb Sulfoxide   | DI(2-Ethylhexyl) Phthalate | Lasso                     | Propachlor                            |
| 1,1-Dichloroethylene        | Aldrin               | Dibromomethane             | M-Dichlorobenzene         | Sec-Butylbenzene                      |
| 1,1-Dichloropropene         | Benzene              | Dicamba                    | Methomyl                  | Simazine                              |
| 1,2,3-Trichlorobenzene      | Benzo(a)pyrene       | Dichlorodifluoromethane    | Methoxychlor              | Styrene                               |
| 1,2,3-Trichloropropane      | BHC-Gamma            | Dichloromethane            | Methyl Tert-Butyl Ether   | Tert-Butylbenzene                     |
| 1,2,4-Trichlorobenzene      | Bromobenzene         | Dieldrin                   | Metolachlor               | Tetrachloroethylene                   |
| 1,2,4-Trimethylbenzene      | Bromochloromethane   | Dinoseb                    | Metribuzin                | Toluene                               |
| 1,2-Dibromo-3-Chloropropane | Bromoform            | Diquat                     | N-Butylbenzene            | Total Haloacetic Acids (HAA5)         |
| 1,2-Dichloroethane          | Bromomethane         | e.Coli                     | N-Propylbenzene           | Total Polychlorinated Biphenyls (PCB) |
| 1,2-Dichloropropane         | Butachlor            | Endothall                  | Naphthalene               | Toxaphene                             |
| 1,3,5-Trimethylbenzene      | Carbaryl             | Endrin                     | Nitrite                   | Trans 1,2-Dichloroethylene            |
| 1,3-Dichloropropane         | Carbofuran           | Ethylbenzene               | O-Chlorotoluene           | Trichloroethylene                     |
| 1,3-Dichloropropene         | Carbon Tetrachloride | Ethylene Dibromide         | O-Dichlorobenzene         | Thichlorofluoromethane                |
| 2,2-Dichloropropane         | Chlordane            | Glyphosate                 | Oxamyl                    | Vinyl Chloride                        |
| 2,4,5-TP                    | Cholorobenzene       | Heptachlor                 | P-Chlorotoluene           | Xylenes, Total                        |
| 2,4-D                       | Chloroethane         | Heptachlor Epoxide         |                           |                                       |